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Abstract
The zz and xx (yy) dynamic structure factors of the dimerized spin- 1

2
isotropic XY chain in a transverse (z) field are calculated for arbitrary
temperatures. The zz structure factor can be given in analytical terms, involving
a single integration, whereas the xx dynamic structure factor can be evaluated
completely numerically for very long chains. We compare the two structure
factors and discuss in some detail how a dimerization manifests itself in the
dynamic structure factors at different external fields and temperatures. We
compare our results to corresponding results for the dimerized Heisenberg
chain obtained by approximate techniques.

PACS numbers: 75.10.−b, 02.60.−x, 05.10.−a, 05.70.Ce, 82.35.−x

1. Introduction

The dynamic properties of dimerized quantum spin chains have recently been at the focus
of many studies mainly in connection with the discovery of spin-Peierls and structurally
dimerized chains [1, 2]. On the one hand, neutron scattering is a basic experimental technique
in the study of such compounds [3] and the interpretation of experimental data requires a
corresponding theoretical background. On the other hand, theoretical studies of the dynamic
properties are interesting in their own right even for uniform quantum spin chains. Moreover,
the dynamics of the dimerized chain should exhibit new features, which reflect in a complicated
way the regular alternation of the exchange interaction connected with a lattice distortion.

Usually, to model the quantum dimerized magnetic chain one employs the Heisenberg
model (sometimes with modifications, e.g., frustration, interchain interactions etc).
Unfortunately all existing theories of the dynamic properties of the latter model (see, e.g.,
[4–11]) involve approximations and hence it is mandatory to compare the results obtained
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by various approaches in order to separate the influence of the approximation made from
the generic properties of the system studied. However, some basic features of dimerized
spin chains can be illustrated within the simpler framework of a spin- 1

2 XY chain. By
means of the Jordan–Wigner transformation that spin chain can be mapped onto a system
of noninteracting spinless fermions and therefore a rigorous analysis of many statistical
mechanical properties becomes possible [12]. The same reformulation in terms of the Jordan–
Wigner fermions applied to the Heisenberg chain results in interacting fermions and therefore
further approximations are required to proceed with the derivation of the statistical mechanical
quantities.

The thermodynamic properties of the spin- 1
2 XY chain in a transverse field and with

modulations due to either a spin-Peierls transition or a permanent structural deformation have
been analysed extensively [13–20]. The dynamic properties are more difficult to analyse; up
to now research was mainly restricted to the uniform case. The z spin component at each
site is expressed as a product of two Fermi operators attached to that site and therefore the zz
dynamics is well understood [21, 15]. In contrast, the x or y spin components at each site are
essentially nonlocal objects in terms of Jordan–Wigner fermions involving Fermi operators
attached not only to that particular site but to a string of sites extending to the boundary of
the system. As a result the xx (yy, xy, yx) time-dependent spin correlation functions are
complicated averages of products of a large number of Fermi operators. A series of papers
present the infinite temperature results [22–24]; the results at finite and zero temperatures
are restricted to asymptotics and special combinations of the Hamiltonian parameters
[25–30]. There were several attempts to study the xx (yy, xy) dynamics numerically [31–35].
The results obtained numerically agree with the exact analytical expressions known in some
limiting cases and, as a matter of fact, constitute the only results available at finite temperatures
and arbitrary Hamiltonian parameters. Our numerical approach to the dynamic properties of
the spin- 1

2XY chain in a transverse field [35] is not restricted to the uniform case but can be
easily applied for arbitrary nonuniform chains.

In this paper we present the first results for the zz and xx (yy) dynamic structure factors for
a wide range of temperatures and transverse fields for the regularly alternating spin- 1

2 isotropic
XY chain in a transverse field obtained partly analytically and partly numerically. After a
brief introduction to the model and explanation of the numerical approach (section 2) we
present results for the time-dependent spin pair correlation functions (section 3). We validate
our approach by comparing the numerical findings with the exact results for zz correlation
functions and with the exact results for xx (yy) correlation functions at infinite temperature
and at zero temperature in a strong transverse field. Further we present numerical results for
the xx (yy) dynamic structure factor (section 4) and compare them to the corresponding results
for the zz dynamics [24, 15, 36]. We compare the computed dynamic structure factors with the
corresponding quantities for the Heisenberg chain as obtained from various approximations
[8, 11, 37]. We conclude with a brief summary (section 5).

2. Model and method

We consider a nonuniform one-dimensional isotropic XY model in a transverse field which
consists of N → ∞ spins one-half governed by the Hamiltonian

H = 


N∑
n=1

szn +
N−1∑
n=1

J (1 − (−1)nδ)
(
sxn s

x
n+1 + syn s

y

n+1

)
. (1)

Here 
 is the magnetic field directed along the z axis (transverse field). The alternating
exchange interaction J (1 − (−1)nδ) depends on the dimerization parameter δ (0 < δ < 1),
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which is a constant for a structurally dimerized chain or which is determined self-consistently
by minimizing the total free energy for the spin-Peierls chain [13]. Moreover, the spin-Peierls
chain exhibits the dimerized phase only for weak fields and above some characteristic value
of the field a transition to an incommensurate phase occurs (see, e.g., [38]). In the limit
δ = 0 equation (1) corresponds to the uniform XY chain. In the opposite limit δ = 1 one
arrives at a collection of isolated (uncoupled)XY dimers (for a corresponding case of isolated
antiferromagnetic Heisenberg dimers and applications to KCuCl3 see [39]).

Our main interest is in the xx dynamic structure factor defined by

Sxx(κ, ω) = 1

N

N∑
j=1

N∑
n=1

eiκn
∫ ∞

−∞
dt e−ε|t| eiωt

〈
sxj (t)s

x
j+n

〉
ε → +0 (2)

the calculation of which requires the knowledge of the time-dependent xx spin correlation
functions. Because of the symmetries inherent in the model equation (2) can be rewritten as

Sxx(κ, ω) = Re

(∫ ∞

0
dt e−εt eiωt

(〈
sxj (t)s

x
j

〉
+
〈
sxj+1(t)s

x
j+1

〉
+ 2 cos κ

(〈
sxj (t)s

x
j+1

〉
+
〈
sxj+1(t)s

x
j+2

〉)
+ 2 cos(2κ)

(〈
sxj (t)s

x
j+2

〉
+
〈
sxj+1(t)s

x
j+3

〉)
+ . . .

))
. (3)

(Note that in general
〈
sxj (t)s

x
j+n

〉 �= 〈
sxj+1(t)s

x
j+1+n

〉
due to dimerization.)

The calculation of the correlation functions
〈
sxj (t)s

x
j+n

〉
proceeds along the lines explained

in [35]. In mapping the spin chain Hamiltonian (1) to a fermion Hamiltonian by the Jordan–
Wigner transformation, the boundary conditions have to be handled with care, as already
pointed out by the inventors of the XY model [12]. Boundary conditions are important
since they influence the structure of the Hilbert space. It was recognized early [25] that
periodic boundary conditions lead to technical problems in the calculation of dynamic x spin
pair correlations which have remained unsolved until today. Therefore we have used open
boundary conditions. The data we present in this paper were obtained from chains of N =
400 spins with J = −1, δ = 0, . . . , 0.1, 0.2 and the transverse field 
 = 0, 0.1, . . . , 1 at the
inverse temperature β = 20 and higher temperatures. We calculated

〈
sxj (t)s

x
j+n

〉
in equation (3)

with j = 41 and n up to 50 for times up to tc = 200. We did the integral over t in equation (3)
putting typically ε = 0.001. We performed many test calculations similar to those described
in [35] to assess the effects of finite N, j, n, tc and ε for the given values of the Hamiltonian
parameters and temperature. Thus we made sure that the numerical results for Sxx(κ, ω)
presented in section 4 pertain to the thermodynamic limit.

We finish this section by commenting on the generalizations of our results. Making
use of the transformation sx′n = s

y
n , s

y′
n = −sxn one finds that

〈
s
y

j (t)s
y

j+n

〉 = 〈
sxj (t)s

x
j+n

〉
and

hence Syy(κ, ω) = Sxx(κ, ω). A similar transformation, sx′2n = −sx2n, s
y′
2n = −s

y

2n, shows that〈
sxj (t)s

x
j+n

〉
for J > 0 is equal to (−1)n

〈
sxj (t)s

x
j+n

〉
for J < 0. Thus Sxx(κ, ω) for ferromagnetic

exchange interaction (J < 0) is equal to Sxx(π − κ, ω) for antiferromagnetic interaction
(J > 0). Since the above transformation changes the sign of J but does not affect the operators
szn it is clear that

〈
szj (t)s

z
j+n

〉
and Szz(κ, ω) do not depend on the sign of J . Finally, knowing

the dynamic structure factors Sαα(κ, ω) one can also examine the dynamic susceptibility
χαα(κ, ω), another quantity often used for the discussion of dynamic properties. Imχαα(κ, ω)

follows from Sαα(κ, ω) through the fluctuation–dissipation theorem, whereas Reχαα(κ, ω)
follows from Imχαα(κ, ω) through the dispersion (or Kramers–Kronig) relation [40].
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3. Time-dependent pair spin correlation functions

We begin with the time-dependent zz spin correlation functions, which can be found
analytically following, for example, the derivation of [15]. The Jordan–Wigner transformation
[12] from spin raising and lowering operators s±

n = sxn ± isyn to Fermi operators c+
n, cn is

followed by the Fourier transformation cn = 1√
N
�κ exp(−iκn)cκ, c+

n = 1√
N
�κ exp(iκn)c+

κ

with κ = 2π
N
p, p = −N

2 + 1, . . . , N
2 (N is even) and finally the Bogolyubov transformation

cκ = uκ+πηκ + ivκηκ+π, c
+
κ = uκ+πη

+
κ − ivκη+

κ+π with

uk = 1√
2

√
1 +

| cos κ |
εκ

vκ = sgn(sin(2κ))
1√
2

√
1 − | cos κ |

εκ

εκ =
√

cos2 κ + δ2 sin2 κ. (4)

As a result the Hamiltonian has the form H = ∑
κ $κ

(
η+
κηκ − 1

2

)
with $κ = 
 + λκ, λκ =

sgn(cos κ)J εκ . Using the relation
〈
szj (t)s

z
j+n

〉 − 〈
szj
〉〈
szj+n

〉 = 〈c+
j (t)cj+n〉〈cj (t)c+

j+n〉 we derive
the following expression for the time-dependent zz spin correlation functions:

〈
szj (t)s

z
j+n

〉− 〈
szj
〉〈
szj+n

〉 = 1

4π2

∫ π

−π
dκ1 e−iκ1n

((
u2
κ1

− i(−1)juκ1vκ1

)
nκ1 ei$κ1 t

+
(
v2
κ1

+ i(−1)juκ1vκ1

)
nκ1+π ei$κ1 +π t

) ∫ π

−π
dκ2 eiκ2n

((
u2
κ2

+ i(−1)juκ2vκ2

)
×(1 − nκ2

)
e−i$κ2 t +

(
v2
κ2

− i(−1)juκ2vκ2

) (
1 − nκ2+π

)
e−i$κ2 +π t

)
(5)

with the Fermi function nκ = 1
1+eβ$κ . The expression (5) possesses the J → −J symmetry

mentioned above. We have used (5) to check our numerical procedures.
Explicit results are also available for the time-dependent correlations of x (y) spin

components in the infinite-temperature limit β = 0 [23, 24]. For β = 0 the correlations
of the sx(sy) (but not sz) vanish at different sites. The autocorrelation functions are given by
the following formulae:〈
sxj (t)s

x
j

〉 = 〈
s
y

j (t)s
y

j

〉 = 1
4 ReZj(t)

〈
sxj (t)s

y

j

〉 = −〈syj (t)sxj 〉 = 1
4 ImZj(t)

(6)

Zj(t) =
'1

(
J+t,

J−
J+

)
'1

(
0, J−

J+

) H1

(
J+t,

J−
J+

)
H1

(
0, J−

J+

) exp


−i
t −


1 −

E
(
J−
J+

)
K
(
J−
J+

)

 J 2

+ t
2


 .

Here the Jacobian theta and eta functions are defined by

'1(u, k) ≡
∞∑

n=−∞
qn

2
e2niz H1(u, k) ≡

∞∑
n=−∞

q(n+ 1
2 )

2

e(2n+1)iz

(7)

q ≡ exp

(
−π

K(
√

1 − k2)

K(k)

)
z ≡ πu

2K(k)

whereas the complete elliptic integrals of first and second kinds are defined by

K(k) ≡
∫ π

2

0

dθ√
1 − k2 sin2 θ

E(k) ≡
∫ π

2

0
dθ
√

1 − k2 sin2 θ (8)

and J 2
± ≡ 1

4J
2(1 ± δ)2. We compared the results of our numerical computations with the

analytical results at infinite temperature (6)–(8) and found excellent agreement (figure 1).
From figure 1 one can see that the high-temperature limit is achieved already at β = 0.1 for
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                             β=10
                             β=1
                             β=0.1
                             β=0.001 

                              J=-1    N=400

<
sx 41

(t
)s

x 41
>

t

Figure 1. Time dependence of the autocorrelation function 〈sxj (t)sxj 〉 obtained numerically for
j = 41 (J = −1,
 = 0.5, N = 400, δ = 0.12) for different temperatures β = 20 (1), β =
10 (2), β = 1 (3), β = 0.1 and β = 0.001 (4) (the curves for the two latter values of temperature
coincide). The curve corresponding to the exact analytical result for β = 0 (6)–(8) coincides with
curve 4.

the time range shown. Very small differences show up at later times, similar to the situation
at δ = 0 [32, 35].

One more exact result can be obtained for
〈
sxj (t)s

x
j+n

〉
at zero temperature β = ∞ as the

value of 
 exceeds |J |. The ground state of the spin model is then completely polarized
(|GSs〉 = ∏N

n=1 |↑n〉 if 
 < −|J | or |GSs〉 = ∏N
n=1 |↓n〉 if 
 > |J |) or in the fermionic

description completely full (η+
κ |GSη〉 = 0 if 
 < −|J |) or completely empty (ηκ |GSη〉 = 0

if 
 > |J |). Assume, for example, that 
 > |J |. Then
〈
sxj (t)s

x
j+n

〉 = 1
4 〈GSs |s−

j (t)s
+
j+n|GSs〉,

and further the crucial simplification occurs

s+
m|GSs〉 = 1√

N

∑
κ

eiκm(uκ+πη
+
κ − ivκη+

κ+π)|GSη〉 (9)

i.e., the Jordan–Wigner sign factor exp (iπM) (where M is the total number of fermions at
sites l < m) on the rhs of equation (9) yields 1 because there are no fermions in the ground
state. As a result〈
sxj (t)s

x
j+n

〉 = 1

4N

∑
κ

eiκn (u2
κ e−i$κ t + v2

κ e−i$κ+π t − i(−1)j+nuκvκ(e−i$κ t − e−i$κ+π t )
)
. (10)

In the limiting case δ = 0 the rhs of equation (10) transforms into 1
4N

∑
κ exp(i(κn −

$κt)),$κ = 
 + J cos κ > 0, which yields a Bessel function [26].
In figure 2 we show time-dependent zz correlations of spins close to the centre of a

chain with length N = 800 at zero temperature in zero magnetic field, for δ = 0 (uniform) and
δ = 0.12 (dimerized). The dimerization-induced changes in the correlations are clearly visible
but small; figure 2(b) demonstrates the breaking of translational invariance by dimerization.
Comparing figure 2 to corresponding data for
= 0.1 we observe that the correlation functions
for δ = 0.12 do not change on the scale of the figure, whereas those for δ = 0 change slightly,
in line with the fact [15] that the zero-temperature z spin dynamics is field-independent up to
the threshold 
 = δ.

The xx time-dependent correlations
〈
sxj (t)s

x
j+n

〉
at low temperature show a stronger

dependence on δ (and 
) than their zz counterparts, as seen in figures 3 and 4. Figure 3
shows how all correlations for distances n = 0, 1, 2 develop similar oscillations (of increasing
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R
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)s

z j>
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-0,05
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0,10
(b)

 

R
e<

sz j(t
)s

z j+
1>

0 20 40
-0,15

-0,10

-0,05

0,00

0,05

0,10

t

(c)

 

R
e<

sz j(t
)s

z j+
2>

Figure 2. Real part of the correlation functions 〈szj (t)szj+n〉 at zero temperature and zero magnetic
field for uniform (δ = 0, dotted curves) and dimerized (δ = 0.12, solid or dashed curves) N = 800
chains. Both j = 401 and j = 402 results are shown. For n = 0 (a) and n = 2 (c) correlations for
the two j values coincide, for n = 1 (b) and δ = 0.12 they split. (The solid line is for j = 401, the
dashed line for j = 402.) Large j values were used in order to avoid finite-size effects which are
strongest at zero temperature.

frequency) as δ grows. Figure 4 shows data for δ = 0 and δ = 0.08 at sites j = 41, 42
and for distances n � 5. These data demonstrate how dimerization dominates the long-time
behaviour of the dynamic correlations in the sense that all correlations organize themselves
into two groups according to the number of ‘weak’ bonds (of strength J (1 − δ)) between
the two sites involved. Apart from small deviations the correlations depend only on the
evenness/oddness of the number of weak bonds. Analogous data for 
 = 0.1 show that
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Figure 3. Real part of the correlation functions 〈sxj (t)sxj+n〉 at low temperature, β = 20, and small
magnetic field, 
 = 0.000 01, for a N = 400 chain and different values of the dimerization: δ = 0
(dot–dot–dashed), δ = 0.04 (dot–dashed), δ = 0.08 (dashed), and δ = 0.12 (solid). Results for
j = 41 and j = 42 are shown. These two sets of results coincide for n = 0 (a) and n = 2 (d), but
they differ for n = 1 (b, c).
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+
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Figure 4. Real part of the correlation functions 〈sxj (t)sxj+n〉 at low temperature, β = 20, and
small magnetic field, 
 = 0.000 01, for N = 400 chain and dimerizations δ = 0 (a) and δ = 0.08
(b), (c). Results for j = 41, 42 and various n (as denoted next to the curves) are shown. For
δ = 0 the results for j = 41 and 42 coincide. For δ = 0.08 the correlation functions at long times
organize into two groups according to whether the number of ‘weak’ (J (1 − δ)) bonds between
the two sites is even or odd.

the magnetic field generally tends to suppress the time-dependent features introduced by the
dimerization in the zero-field case. The long-time behaviour is again determined by the
number of weak bonds.
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 κ

δ=0   

ω

0 1 2 3
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1
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 κ

δ=0.1   

ω

Figure 5. Location of the roots of equation (13) in the (κ,ω) plane for δ = 0 and 0.1: light region:
no roots, light grey region: two roots, dark grey: four roots.

4. Dynamic structure factors

In this section we discuss the dynamic structure factors Szz(κ, ω) and Sxx(κ, ω) at low,
intermediate and high temperatures.

From equation (5) the following expression for Szz(κ, ω) may be derived4:

Szz(κ, ω) =
∫ ∞

−∞
dt eiωt 1

N

N∑
j=1

N∑
l=1

eiκ(l−j)(〈szj (t)szl 〉− 〈
szj
〉〈
szl
〉)

=
∫ π

−π
dκ ′ ((uκ ′uκ ′−κ + vκ ′vκ ′−κ )2nκ ′(1 − nκ ′−κ ) δ(ω + λκ ′ − λκ ′−κ )

+ (uκ ′vκ ′−κ − uκ ′−κvκ ′)2nκ ′(1 − nκ ′−κ+π) δ(ω + λκ ′ − λκ ′−κ+π)
)
. (11)

For β = ∞ the κ ′ integral may be evaluated explicitly, as discussed by Taylor and Müller [15].
A closed-form expression forSxx(κ, ω)may be obtained from equation (10) for the special

case β = ∞,
 > |J |:
Sxx(κ, ω) = π

2

(
u2
κδ(ω −$κ) + v2

κδ(ω −$κ+π)
)
. (12)

The basic features of Szz(κ, ω) (11) can be interpreted in terms of the Jordan–Wigner
fermions whose one-particle eigenvalues λκ and corresponding eigenstates are completely
determined by the value of δ (for given J ). Temperature and magnetic field enter only through
the Fermi functions describing the thermal occupation of the eigenstates, where the magnetic
field corresponds to the chemical potential. The most important variations in Szz(κ, ω) occur
along certain linesω = εi(κ) in the (κ, ω) plane which were determined and discussed in detail
by Taylor and Müller [15]. (We have collected the corresponding formulae in an appendix for
easy reference.)

Energy conservation implies that Szz(κ, ω) may only differ from zero if there is a
κ ′ (|κ ′| � π) such that one of the two relations

ω = −λκ ′ + λκ ′−κ ω = −λκ ′ + λκ ′−κ+π (13)

holds. Each of these two conditions can only be satisfied in a restricted region of the (κ, ω)
plane; the number of corresponding κ ′ values is even due to the symmetries of the dispersion
relation λκ . These regions (for positive ω) are shown in figure 5 for δ = 0 and δ = 0.1.
4 The closely related dynamic susceptibility χzz(κ , ω) for a more general XY chain with modulated couplings is
discussed in [41].
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For δ > 0 there is a lower continuum of (κ, ω) points, symmetric with respect to the line
κ = π

2 , and two partly overlapping upper continua which are mirror images of each other.
The lower continuum is bounded by the function ε5(κ) (see appendix) and each of its points
represents four possible κ ′ values in (11). The upper continua are bounded by ε1(κ) and
ε2(κ) = ε1(π − κ); their common lower boundary around κ = π

2 is ε0(κ). For δ → 0 the
gap between the lower and upper continua disappears and the continua merge, as shown in the
upper part of figure 5.

The distribution of spectral weight within the continua is determined by several factors.
First of all, the two energy conservation δ-functions in (11) each give rise to a factorA−1(κ, ω)

where

A1(κ, ω) =
∣∣∣∣dλκ ′

dκ ′ − dλκ ′−κ
dκ ′

∣∣∣∣ A2(κ, ω) =
∣∣∣∣dλκ ′

dκ ′ − dλκ ′−κ+π

dκ ′

∣∣∣∣ (14)

(with κ ′ from (13)) which may be interpreted as density-of-states factors. The zeros ofA(κ, ω)
are located at the continuum boundaries and determine potential singularities of Szz(κ, ω). As
usual in one dimension these singularities are of inverse square-root type. The Bogolyubov
transformation factors enter Szz(κ, ω) as

B1(κ, ω) = (uκ ′uκ ′−κ + vκ ′vκ ′−κ )2 B2(κ, ω) = (uκ ′vκ ′−κ − uκ ′−κvκ ′)2 (15)

(with κ ′ from (13)). As mentioned above, the dependence of Szz(κ, ω) on field and temperature
comes in only through the two weight factors

C1(κ, ω) = nκ ′(1 − nκ ′−κ ) C2(κ, ω) = nκ ′(1 − nκ ′−κ+π) (16)

(with κ ′ from (13)) which may vary between 0 and 1; for infinite temperature (β = 0) they
are equal to 1

4 and Szz(κ, ω) becomes field-independent. This is apparent in the corresponding
panels of figures 6 and 7.

At zero temperature the discontinuities in the weight factors (16) lead to discontinuities in
Szz(κ, ω)which become relevant for
 > δ. As discussed in detail in [15], these discontinuities
occur along lines ε ′

1(κ) and ε ′
2(κ) = ε ′

1(π − κ) within the upper continuum and along lines
ε3(κ) and ε4(κ) = ε3(π − κ) within the lower continuum. For 
 < δ, Szz(κ, ω) vanishes
everywhere in the lower continuum, and the excitation spectrum has a gap (see figure 8). At

 = δ, Szz(κ, ω) begins to differ from zero along the line ε3(κ) (= ε4(κ)); the gap in the
excitation spectrum closes discontinuously (see figure 9). For larger fields ε3(κ) and ε4(κ)

coincide no longer and a larger part of the lower continuum becomes visible in figure 10 (see
also figure 9). As 
 → 1 the region where Szz(κ, ω) �= 0 shrinks again, degenerating to the
line ε3(κ) (= ε4(κ)), and finally for 
 > 1, Szz(κ, ω) vanishes because the ground state is
completely polarized.

Figures 9 and 10 also show the variations in the zero-temperature structure factor Szz(κ, ω)
in the upper continua as 
 is varied. In these continua Szz(κ, ω) �= 0 everywhere for 
 < δ.
For 
 > δ discontinuities along the lines ε′

1(κ) and ε ′
2(κ) = ε ′

1(π − κ) appear. The region
where Szz(κ, ω) �= 0 shrinks with growing field, first symmetrically at the lower left and right
corners of the continuum, later also in the upper centre. Finally, for 
 → 1 that region
degenerates to the line ε ′

1(κ) (= ε ′
2(κ)), and for 
 > 1, Szz(κ, ω) vanishes everywhere. It

is interesting to note that for 
 = 1+ the exact δ-function expression (12) for Sxx(κ, ω)
takes over exactly where Szz(κ, ω) fades away at 
 = 1−. This shows that due to the fully
polarized ground state at 
 � 1 both Szz(κ, ω) and Sxx(κ, ω) rely on the same set of simple
(two-particle) excitations, but with vastly different spectral weights. While Sxx(κ, ω) is a
δ-function for 
 > 1, Szz(κ, ω) degenerates to a function of finite height and zero width as

 → 1.
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Figure 6. Szz(κ, ω) as follows from the exact formula (11) for the spin chain (1) with J = −1,
δ = 0.1, 
 = 0 at different temperatures β = ∞, 20, 5, 1, 0.1, 0.000 01.

Figures 6 and 7 show the temperature dependence of Szz(κ, ω) at δ = 0.1 for zero field
and for intermediate field (
 = 0.5), respectively. The effects observed can be interpreted
as variations in the occupation factors (16) whose zero-temperature discontinuities are shifted
by 
 and softened by nonzero temperatures. At nonzero temperature β < ∞ the lower
continuum starts to contribute to Szz(κ, ω) for fields below the ‘lower critical field’ 
 = δ.
With rising temperature the ‘upper critical field’ 
 = 1 also gradually loses its importance,
and the intensity redistributes within the continua. Finally all field-dependent features in
Szz(κ, ω) (such as Fermi function induced discontinuities within the continua) melt away and
only the continuum boundaries remain for β → 0. Note, however, that the distribution of
spectral weight over the continua remains asymmetric up to the highest temperatures due to
the temperature-independent factors A(κ, ω) (14) and B(κ, ω) (15).

In figure 11 we show the temperature-dependent redistribution of spectral weight within
Szz(κ, ω) in the extreme case 
 = 1. The two scans at ω = 0.5 and κ = π

4 , respectively, show
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Figure 7. The same as in figure 6 for 
 = 0.5.

the single peak of finite height and infinitesimally small width at zero temperature developing
gradually into the continua determined by equation (13) and shown in figure 5, with their
inverse square-root boundary singularities.

In figure 12 we display Szz(κ, ω) at low temperature (β = 20) for dimerization δ = 0.1 at
different values of the transverse field. Analogous plots for Sxx(κ, ω) are shown in figure 13,
and for high temperature (β = 1) in figure 14. The detailed comparison of these data which
follows below shows that the two-particle excitation continua which determine the zz dynamic
structure factor completely also dominate5 the behaviour of the xx dynamic structure factor.
This generalizes our earlier observations for the uniform chain (δ = 0) [35]. However, due to
the many-body nature of the x correlation function the low-temperature xx dynamic structure
factor exhibits also nonzero (but small) values outside the two-particle excitation continua,
again, similar to the uniform case [35]. The first panel of figure 12 shows the strong upper

5 The importance of the two-particle excitations for the xx structure factor was already stressed by Taylor and Müller
[15]; see the discussion on p 16 of that reference and the references cited there.
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Figure 8. Szz(κ,ω) as follows from the exact formula (11) for the spin chain (1) with J = −1
for different values of the dimerization parameter δ = 0, 0.02, 0.04, 0.08, 0.1, 0.12 and 
 = 0 at
β = ∞.

excitation continuum and the emerging lower continuum in Szz(κ, ω). Note that
 is just at the
critical value so that at zero temperature the lower continuum is still absent (compare the first
panel of figure 10). Thus the emerging lower continuum is a rather strong finite-temperature
effect, assisted, of course, by the diverging density of states at the upper boundary of the lower
continuum. The x spin pair correlation under the Jordan–Wigner transformation corresponds
to a many-body correlation, while the z correlation maps to a simple two-particle correlation,
which restricts the structure factor Szz(κ, ω) to a finite part of the (κ, ω) plane as discussed
above. No such restriction applies to Sxx(κ, ω) so that one might expect nonzero values of that
structure factor far above the continua displayed in Szz(κ, ω). The opposite is true, as the first
panel of figure 13 shows: Sxx(κ, ω) is rather small, except for two quite well-defined excitation
branches following the lower boundary of the upper continuum and the upper boundary of the
lower continuum, respectively. The frequency bandwidth of Sxx(κ, ω) thus is much smaller
than that of Szz(κ, ω) (except for small k) and not larger as naively expected. Similar tendencies
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Figure 9. The same as in figure 8 for 
 = 0.1.

were observed in the uniform chain [35]. Evidently this effect—reduction of a continuum to
a small number of relatively well-defined modes—is a consequence of the many-body nature
of the correlation function, but the detailed mechanism is still subject to speculation. At
high temperature (figure 14) Sxx(κ, ω) still remains basically restricted to a finite ω band but
the low-temperature structure gets lost along the way to complete κ-independence at infinite
temperature. (Compare our earlier paper [35] for some high-temperature figures at δ = 0.)

At higher magnetic fields (compare, for example, the 
 = 0.25 panels of figures 12
and 13) the excitation branches of Sxx(κ, ω) (at low temperature) wander into the excitation
continua of Szz(κ, ω), that is, the upper branch moves upward in frequency, and the lower
branch moves downward. In addition, another high-frequency branch becomes more clearly
visible of which only very faint indications are present at 
 = 0.1. This high-frequency
excitation follows the upper boundary of the upper continuum and thus does not depend on
the magnetic field. An additional low-energy branch ending at κ = π starts to show up at

 = 0.4. The two low-energy branches seem to meet at a soft-mode point on the κ axis.
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Figure 10. Szz(κ,ω) as follows from the exact formula (11) for the spin chain (1) with J = −1,
δ = 0.1 for different values of the transverse field 
 = 0.1, 0.11, 0.15, 0.2, 0.4, 0.6, 0.8, 0.99 at
β = ∞. Note that Szz(κ,ω) does not depend on 
 for 
 < δ.

Comparisons with the 
 = 0.4, 0.6, and 0.8 panels of figure 10 show that these low-frequency
modes of Sxx(κ, ω) coincide with the field-dependent lower boundaries of the continua of
Szz(κ, ω) at zero temperature. In the field regime where Sxx(κ, ω) displays the richest branch
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Figure 11. Constant frequency and wave vector scans of Szz(κ,ω) (11) for the spin chain (1) with
J = −1, δ = 0.1 at the critical field 
 = 1 while temperature varies (β = 100 000 (thin solid
curves), β = 1000 (thick dashed curves), β = 100 (thick solid curves), β = 20 (dotted curves),
β = 10 (dot–dashed curves), β = 5 (dashed curves), β = 0 (solid curves)).

structure, that is, 0.5 � 
 � 0.75 we can identify these branches with those determined in
[15] for zero temperature as follows. For small κ and ω there is a large accumulation of
spectral weight which cannot be associated unambiguously with the many branches present
in that region. Probably there is a splitting between the three branches starting at ω = 0 and
the one (ε1(κ)) starting at ω = 2δ. At larger κ this large accumulation of spectral weight
splits into two branches. The lower branch can be identified with ε4(κ). ε4(κ) bends down
and touches the κ axis at a soft mode and then rises again. In the vicinity of the soft mode
Sxx(κ, ω) has negligible spectral weight. Beyond the soft mode κ , Sxx(κ, ω) picks up spectral
weight again, up to the maximum of the right branch of ε4(κ). From there, the lower branch of
Sxx(κ, ω) (after a little gap) continues along ε ′

2(κ). (Note that ε4(κ) and ε ′
2(κ) show a crossing

as δ → 0.) The upper branch also is separated by a dimerization-induced gap from the small-κ
and small-ω region of high spectral weight. It follows the branches ε1(κ) and ε ′

1(κ) in the
region where ε ′

1(κ) is an increasing function of κ . (Note that the decreasing part of ε′
1(κ) also

leaves a slight trace in Sxx(κ, ω).) For large κ , the upper branch in Sxx(κ, ω) separates again,
as do ε1(κ) and ε ′

1(κ), and ε ′
1(κ) at κ = π encounters the lower branch again.

We have thus seen that the basic spectral features of Sxx(κ, ω) at low temperature can
be identified with features governing [15] the zero-temperature Szz(κ, ω). That component of
the structure factor is a simple two-particle correlation in terms of Jordan–Wigner fermions
and the spectral features discussed in [15] correspond to either absolute boundaries of the
two-particle excitation spectrum or magnetic-field-dependent Fermi function discontinuities
(compare (16)). It is not at all clear why these two-particle features should dominate the
many-body correlation Sxx(κ, ω), but, as we have observed in our numerical results, they do
so. Further research is necessary to clarify this issue.

It should be noted that the dynamic structure factors of quantum spin chains can often be
obtained approximately using a bosonization treatment [4, 42]. However, since that approach
is restricted to low-energy physics the high-frequency branches seen in figure 13 cannot be
observed within that theory.
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Figure 12. Szz(κ,ω) as follows from exact formula (11) for the spin chain (1) with J = −1,
δ = 0.1 for different values of the transverse field 
 = 0.1, 0.25, 0.4, 0.5, 0.6, 0.75, 0.8, 0.9, 1 at
low temperature, β = 20.

Clearly, the Hamiltonian of the isotropic XY chain in a transverse field models a very
special type of structurally dimerized quantum spin chain. However, combining the Hartree–
Fock approximation with the Jordan–Wigner fermionization one can analyse in a similar
manner the dynamic properties of the Heisenberg chain [11] (see also section 11–20 of
[7] and references cited there). Without elaborating that possibility further, we finish this
section by contrasting the dynamic properties of the dimerized XY chain with those of the
dimerized Heisenberg chain [8, 11, 37] and with the experimental data [3] in the spin-Peierls
phase of CuGeO3. The theoretical results for the dimerized Heisenberg chain were obtained
within the continuum approximation [8], RPA [8], the Hartree–Fock treatment [11] and exact
diagonalization techniques [37]; the results reported in [37] refer to the chain in an external
field. Those calculations deal with Szz(κ, ω) (Szz(κ, ω) = Sxx(κ, ω) = Syy(κ, ω) for the
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Figure 13. Sxx(κ,ω) (3) obtained numerically for the spin chain (1) with J = −1, δ = 0.1
for different values of the transverse field 
 = 0.1, 0.25, 0.4, 0.5, 0.6, 0.75, 0.8, 0.9, 1 at low
temperature, β = 20.

isotropic chain without an external field) which is related directly to the neutron scattering
spectrum.

Let us start from the case without an external field (at zero temperature). In [8] general
arguments for the two-particle excitation (delocalized magnon consisting of two spinons or
two free solitons in a bosonized picture of the fermionic theory) continuum with minimum
energy 24 (4 is the gap in the energy spectrum) were given. Besides, below the continuum
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Figure 13. (Continued.)

there is a dispersive one-magnon magnon-like excitation (magnon consisting of two bound
spinons or the bound state of two solitons in the bosonized picture) with minimum energy 4.
Numerical computations for N = 18 sites [37] confirmed that the dominating feature in
Szz(κ, ω) is the one-magnon bound state which is well separated from a continuum of states
with larger ω. In contrast, the consideration based on the Hartree–Fock approximation [11]
does not predict a separate dispersive excitation. The experimental study of the spin-Peierls
phase of CuGeO3 by inelastic neutron scattering by Ain et al [3] clearly demonstrated besides
a dispersive mode a second gap which separates that mode from the edge of the continuum
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Figure 13. (Continued.)

and which was overlooked in previous experiments because of poor resolution. As one can see
from our findings, the XY dimerized chain (without field) does exhibit a gapped two-particle
excitation (upper) continuum (figure 8, the panel for β = ∞ in figure 6) but does not exhibit a
gapped dispersive excitation below the continuum. The absence of bound state branches in the
XY chain is related to the absence of interactions in the corresponding fermion model. This
is quite evident in the case of the z correlations, but less so for the x correlations due to the
many-fermion nature of the latter. On the other hand, our results show one more two-particle
excitation (lower) continuum which becomes visible as temperature increases (the panels for
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Figure 14. Sxx(κ,ω) (3) obtained numerically for the spin chain (1) with J = −1, δ = 0.1 for
different values of the transverse field 
 = 0.1, 0.5, 1 at high temperature, β = 1.

β = 20, 5, 1, 0.1, 0.000 01 in figure 6). The appearance of that continuum with nonzero
temperature (or supercritical field 
 > δ, see below) follows from the Fermi factors (16), as
discussed above.

In the case with an external field (at zero temperature), numerical calculations [37] show
that while the field increases the one-magnon bound state moves down to lower ω and as
a result the gap closes. The bound two-spinon state (=localized magnon) is destroyed by
the field and for larger fields one observes the low-energy two-particle (lower) continuum
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(=delocalized magnons). For the XY dimerized chain the lower continuum is absent at zero
temperature β = ∞ until the field exceeds the value δ|J | at which the gap in the energy
spectrum becomes zero (figure 10, figure 9). For larger field (up to the value of J ) the
two-particle (lower) continuum becomes observable. For nonzero temperatures the lower
continuum is visible even for the gapped chain, i.e., when 
 is smaller than δ|J | as can
be seen in figure 6. Moreover, as the temperature becomes high β → 0 Szz(κ, ω) becomes
field-independent (compare the panels for β = 0.000 01 in figures 6 and 7).

To summarize, the XY dimerized chain exhibits some similarities (two two-particle
excitation continua) and some differences (no dispersive excitation below the upper continuum)
in the dynamic properties in comparison with the Heisenberg chain. Our results give an
impression about the changes in the dynamic properties of the XXZ Heisenberg chain as
the anisotropy in the exchange interaction increases. Besides, in the presence of exchange
interaction anisotropy (as well as of an external field) the dynamic structure factors Szz(κ, ω)
and Sxx(κ, ω) = Syy(κ, ω) have to be considered separately and we have demonstrated what
the differences are in the XY limiting case.

5. Summary

To summarize, we have studied the zz and xx (yy) dynamic structure factors at arbitrary
temperatures for the regularly alternating spin- 1

2 isotropic XY chain in a transverse field.
While partial information on the zz structure factor has been available before, the results for
the xx structure factor are entirely new. We have compared the low-temperature numerical
results for the xx (yy) dynamic structure factor with analytical results available for the zz

dynamic structure factor emphasizing the similarities and differences. We have discussed the
changes in dynamic properties of the spin chain caused by dimerization at different values
of the external (transverse) field demonstrating how those properties depend on microscopic
parameters.

The following new results were obtained: (i) the explicit formula for
〈
szj (t)s

z
j+n

〉
(5) and a

study of the zz time-dependent spin correlations; (ii) Szz(κ, ω) (11) at nonzero temperatures
and a discussion of the temperature effects on zz dynamics; (iii) the explicit formula for〈
sxj (t)s

x
j+n

〉
(10) (and Sxx(κ, ω) (12)) at zero temperature and 
 > |J |; (iv) xx (yy) time-

dependent spin correlations and Sxx(κ, ω) (Syy(κ, ω)) obtained numerically; (v) a comparison
with the known results for the dimerized Heisenberg chain.
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grant no Kl 645/3-3 (A Klümper) to visit Dortmund University in the summer of 2001.

Appendix

In this appendix we collect some useful formulae from [15] which are used in the discussion
of the dynamic structure factors, section 4. The lines ω = εi(κ) in the (κ, ω) plane mark
(potential) discontinuities in the zero-temperature zz dynamic structure factor. ε0, ε1, ε2 and ε5
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are the field-independent boundaries of the continua shown in figure 5, whereas ε ′
1, ε

′
2, ε3 and

ε4 are 
-dependent boundaries resulting from the weight factors (16). They are relevant at

 > δ and visible at low temperature only.

ε0(κ) = (1 + δ) sin κ κc � κ � π − κc κc = 2 arctan
√
δ (A1)

ε1(κ) = 2

√
sin2

κ

2
+ δ2 cos2

κ

2
(A2)

ε2(κ) = ε1(π − κ) (A3)

ε ′
1(κ) = 
 + 
−1

√
(
2 cos κ −

√
(
2 − δ2)(1 −
2) sin κ)2 + δ2 sin2 κ (A4)

ε′
2(κ) = ε ′

1(π − κ) (A5)

ε3(κ) =
∣∣∣∣
 − 
−1

√
(
2 cos κ −

√
(
2 − δ2)(1 −
2) sin κ)2 + δ2 sin2 κ

∣∣∣∣ (A6)

ε4(κ) = ε3(π − κ) (A7)

ε5(κ) = (1 − δ) sin κ. (A8)
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[41] de Lima J P and Gonçalves L L 2001 Preprint cond-mat/0111372
[42] Affleck I 1989 Field theory methods and quantum critical phenomena. Fields, Strings and Critical Phenomena
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